Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.023
Filtrar
1.
Sci Data ; 11(1): 390, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627414

RESUMO

Apple is one of the most economically important and popular temperate fruit trees. The domestication of apple has resulted in substantial phenotypic differences, particularly between wild and cultivated varieties. However, the relationship between gene expression and phenotypic variations in apple remains poorly understood. Here, we present a comprehensive dataset featuring five distinct apple varieties, including two wild varieties and three representative cultivated varieties. The dataset comprises of both phenomics data, encompassing twelve fruit quality-related traits continuously measured over two years, and transcriptomic data obtained at different developmental stages with three biological replicates. We performed basic quality control process, gene expression normalization and differential gene expression analysis to demonstrate the utility and reliability of the dataset. Our findings indicate that gene expression strongly related with phenotypic variations in apple. This dataset serves as a valuable resource, encompassing phenomics and transcriptomic data in multiple formats, thereby facilitating further exploration of the relationships between gene expression and phenotypic traits in apple.


Assuntos
Perfilação da Expressão Gênica , Malus , Fenômica , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Fenótipo
2.
Physiol Plant ; 176(2): e14278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644530

RESUMO

Harvest maturity significantly affects the quality of apple fruit in post-harvest storage process. Although the regulatory mechanisms underlying fruit ripening have been studied, the associated epigenetic modifications remain unclear. Thus, we compared the DNA methylation changes and the transcriptional responses of mature fruit (MF) and immature fruit (NF). There were significant correlations between DNA methylation and gene expression. Moreover, the sugar contents (sucrose, glucose, and fructose) were higher in MF than in NF, whereas the opposite pattern was detected for the starch content. The expression-level differences were due to DNA methylations and ultimately resulted in diverse fruit textures and ripeness. Furthermore, the higher ethylene, auxin, and abscisic acid levels in MF than in NF, which influenced the fruit texture and ripening, were associated with multiple differentially expressed genes in hormone synthesis, signaling, and response pathways (ACS, ACO, ZEP, NCED, and ABA2) that were regulated by DNA methylations. Multiple transcription factor genes involved in regulating fruit ripening and quality via changes in DNA methylation were identified, including MIKCC-type MADS-box genes and fruit ripening-related genes (NAP, SPL, WRKY, and NAC genes). These findings reflect the diversity in the epigenetic regulation of gene expression and may be relevant for elucidating the epigenetic regulatory mechanism underlying the ripening and quality of apple fruit with differing harvest maturity.


Assuntos
Metilação de DNA , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Malus/genética , Malus/crescimento & desenvolvimento , Malus/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Metilação de DNA/genética , Epigênese Genética , Reguladores de Crescimento de Plantas/metabolismo , Epigenômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649857

RESUMO

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Giberelinas/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo
4.
J Agric Food Chem ; 71(46): 18046-18058, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37957030

RESUMO

Fruit size is crucial for fruit trees, as it contributes to both quality and yield. However, the underlying mechanism of fruit size regulation remains largely unknown. Taking advantage of using a fruit double-sized bud mutant of Chinese jujube, "Jinkuiwang" and its wild type, "Jinsixiaozao", we carried out a comprehensive study on the mechanism of fruit size development in jujube. Using weighted gene coexpression network analyses, a number of candidate regulators for fruit size including those involved in hormonal signaling pathways, transcription factors, and heat shock proteins were identified. A hub gene named cytokinin oxidase/dehydrogenase 5 (ZjCKX5), responsible for cytokinin degradation, was found to play a negative role in regulating fruit size development, and overexpressing ZjCKX5 in tomato and Arabidopsis resulted in much smaller fruits and dwarf plants. Furthermore, another two hub genes, ZjWRKY23 and ZjWRKY40 transcription factors, were found to participate in fruit size regulation by targeting and downregulating the ZjCKX5 expression. Overexpressing ZjWRKY23 or ZjWRKY40 in tomato led to much larger fruits and promoted plant architecture. Based on these results, a molecular framework for jujube fruit size regulation, namely, ZjWRKY-ZjCKX5 module, was proposed. This study provides a new insight into the molecular networks underlying fruit size regulation.


Assuntos
Frutas , Oxirredutases , Fatores de Transcrição , Ziziphus , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oxirredutases/genética , Oxirredutases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ziziphus/genética
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835498

RESUMO

Drought stress often leads to heavy losses in mulberry planting, especially for fruits and leaves. Application of plant growth-promoting fungi (PGPF) endows various plant beneficial traits to overcome adverse environmental conditions, but little is known about the effects on mulberry under drought stress. In the present study, we isolated 64 fungi from well-growing mulberry trees surviving periodical drought stress, and Talaromyces sp. GS1, Pseudeurotium sp. GRs12, Penicillium sp. GR19, and Trichoderma sp. GR21 were screened out due to their strong potential in plant growth promotion. Co-cultivation assay revealed that PGPF stimulated mulberry growth, exhibiting increased biomass and length of stems and roots. Exogenous application of PGPF could alter fungal community structures in the rhizosphere soils, wherein Talaromyces was obviously enhanced after inoculation of Talaromyces sp. GS1, and Peziza was increased in the other treatments. Moreover, PGPF could promote iron and phosphorus absorption of mulberry as well. Additionally, the mixed suspensions of PGPF induced the production of catalase, soluble sugar, and chlorophyll, which in turn enhanced the drought tolerance of mulberry and accelerated their growth recovery after drought. Collectively, these findings might provide new insights into improving mulberry drought tolerance and further boosting mulberry fruit yields by exploiting interactions between hosts and PGPF.


Assuntos
Resistência à Seca , Fungos , Interações entre Hospedeiro e Microrganismos , Morus , Estresse Fisiológico , Simbiose , Secas , Frutas/crescimento & desenvolvimento , Fungos/fisiologia , Morus/crescimento & desenvolvimento , Morus/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia
7.
Math Biosci Eng ; 20(1): 241-268, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650764

RESUMO

Fruits require different planting techniques at different growth stages. Traditionally, the maturity stage of fruit is judged visually, which is time-consuming and labor-intensive. Fruits differ in size and color, and sometimes leaves or branches occult some of fruits, limiting automatic detection of growth stages in a real environment. Based on YOLOV4-Tiny, this study proposes a GCS-YOLOV4-Tiny model by (1) adding squeeze and excitation (SE) and the spatial pyramid pooling (SPP) modules to improve the accuracy of the model and (2) using the group convolution to reduce the size of the model and finally achieve faster detection speed. The proposed GCS-YOLOV4-Tiny model was executed on three public fruit datasets. Results have shown that GCS-YOLOV4-Tiny has favorable performance on mAP, Recall, F1-Score and Average IoU on Mango YOLO and Rpi-Tomato datasets. In addition, with the smallest model size of 20.70 MB, the mAP, Recall, F1-score, Precision and Average IoU of GCS-YOLOV4-Tiny achieve 93.42 ± 0.44, 91.00 ± 1.87, 90.80 ± 2.59, 90.80 ± 2.77 and 76.94 ± 1.35%, respectively, on F. margarita dataset. The detection results outperform the state-of-the-art YOLOV4-Tiny model with a 17.45% increase in mAP and a 13.80% increase in F1-score. The proposed model provides an effective and efficient performance to detect different growth stages of fruits and can be extended for different fruits and crops for object or disease detections.


Assuntos
Frutas , Produtos Agrícolas , Frutas/crescimento & desenvolvimento , Morfogênese , Folhas de Planta
8.
Sci Rep ; 12(1): 8749, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610243

RESUMO

Pineapples are an important agricultural economic crop in Taiwan. Considerable human resources are required to protect pineapples from excessive solar radiation, which could otherwise lead to overheating and subsequent deterioration. Note that simple covering all of the fruit with a paper bag is not a viable solution, due to the fact that it makes it impossible to determine whether the fruit is ripe. This paper proposes a system by which to automate the detection of ripe pineapples. The proposed deep learning architecture enables detection regardless of lighting conditions, achieving accuracy of more than 99.27% with error of less than 2% at distances of 300 ~ 800 mm. This proposed system using an Nvidia TX2 is capable of 15 frames per second, thereby making it possible to mount the device on machines that move at walking speed.


Assuntos
Ananas , Aprendizado Profundo , Ananas/crescimento & desenvolvimento , Ananas/fisiologia , Ananas/efeitos da radiação , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Frutas/efeitos da radiação , Humanos , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Luz Solar/efeitos adversos , Taiwan
9.
BMC Plant Biol ; 22(1): 108, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264115

RESUMO

BACKGROUND: Potassium (K) is important in the regulation of plant growth and development. It is the most abundant mineral element in kiwifruit, and its content increases during fruit ripening. However, how K+ transporter works in kiwifruit postharvest maturation is not yet clear. RESULTS: Here, 12 K+ transporter KT/HAK/KUP genes, AcKUP1 ~ AcKUP12, were isolated from kiwifruit, and their phylogeny, genomic structure, chromosomal location, protein properties, conserved motifs and cis-acting elements were analysed. Transcription analysis revealed that AcKUP2 expression increased rapidly and was maintained at a high level during postharvest maturation, consistent with the trend of K content; AcKUP2 expression was induced by ethylene, suggesting that AcKUP2 might play a role in ripening. Fluorescence microscopy showed that AcKUP2 is localised in the plasma membrane. Cis-elements, including DER or ethylene response element (ERE) responsive to ethylene, were found in the AcKUP2 promoter sequence, and ethylene significantly enhanced the AcKUP2 promoter activity. Furthermore, we verified that AcERF15, an ethylene response factor, directly binds to the AcKUP2 promoter to promote its expression. Thus, AcKUP2 may be an important potassium transporter gene which involved in ethylene-regulated kiwifruit postharvest ripening. CONCLUSIONS: Therefore, our study establishes the first genome-wide analysis of the kiwifruit KT/HAK/KUP gene family and provides valuable information for understanding the function of the KT/HAK/KUP genes in kiwifruit postharvest ripening.


Assuntos
Actinidia/crescimento & desenvolvimento , Actinidia/genética , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antiportadores de Potássio-Hidrogênio/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genes de Plantas , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Antiportadores de Potássio-Hidrogênio/genética
10.
BMC Plant Biol ; 22(1): 113, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279080

RESUMO

BACKGROUND: Many seed plants produce winged diaspores that use wind to disperse their seeds. The morphology of these diaspores is directly related to the seed dispersal potential. The majority of winged diaspores have flat wings and only seeds; however, some angiosperms, such as Firmiana produce winged fruit with a different morphology, whose seed dispersal mechanisms are not yet fully understood. In this study, we observed the fruit development of F. simplex and determined the morphological characteristics of mature fruit and their effects on the flight performance of the fruit. RESULTS: We found that the pericarp of F. simplex dehisced early and continued to unfold and expand during fruit development until ripening, finally formed a spoon-shaped wing with multiple alternate seeds on each edge. The wing caused mature fruit to spin stably during descent to provide a low terminal velocity, which was correlated with the wing loading and the distribution of seeds on the pericarp. When the curvature distribution of the pericarp surface substantially changed, the aerodynamic characteristics of fruit during descent altered, resulting in the inability of the fruit to spin. CONCLUSIONS: Our results suggest that the curved shape and alternate seed distribution are necessary for the winged diaspore of F. simplex to stabilize spinning during wind dispersal. These unique morphological characteristics are related to the early cracking of fruits during development, which may be an adaptation for the wind dispersal of seeds.


Assuntos
Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Malvaceae/anatomia & histologia , Malvaceae/crescimento & desenvolvimento , Dispersão de Sementes , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , China , Fenótipo , Vento
13.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163642

RESUMO

Artificial pigmentation of apple fruits has been intensely evaluated to generate less pigmented red apples, which are profitable because of the changes in fruit quality. In this study, we analyzed the diversity of flavonoids and the patterns of flavonoid metabolic gene expression under light irradiation with or without methyl jasmonate (MeJA) treatment in immature (S1) and color-turning (S2) staged 'Fuji' apples. Further, we assessed the metabolic regulation at the gene level between anthocyanin and flavonol in light-responsive apple skins. UV-B exposure within 3 days was found to significantly stimulate anthocyanin accumulation in apple skin compared to other light exposure. S1 skin was more sensitive to UV-B and MeJA treatment, in the aspect of indaein accumulation. The enhancement of apple pigmentation following treatment with adequate levels of UV-B and MeJA was maximized at approximately 72 h. Red (range from 4.25 to 17.96 µg·g-1 DW), blue (range from 4.59 to 9.17 µg·g-1 DW) and UV-A (range from 3.98 to 19.12 µg·g-1 DW) lights contributed to the induction of idaein content. Most genes related to the flavonoid pathways increased their expression under UV-B exposure, including the gene expression of the transcription factor, MdMYB10, a well-known upstream factor of flavonoid biosynthesis in apples. The boosted upregulation of MdMYB10, MdCHS, MdF3H MdLDOX, and MdUFGT genes due to MeJA in UV-B was found and may contribute the increase of idaein. UV-A and UV-B caused higher quercetin glycoside content in both S1 and S2 apple skins than longer wavelengths, resulting in significant increases in quercetin-3-O-galactoside and quercetin-3-O-glucoside. These results suggest that the application of adequate UV-B with MeJA in less-pigmented postharvest apples will improve apple color quality within a short period.


Assuntos
Acetatos/metabolismo , Antocianinas/metabolismo , Ciclopentanos/metabolismo , Flavonoides/metabolismo , Frutas , Malus , Oxilipinas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/crescimento & desenvolvimento , Malus/metabolismo , Pigmentação , Raios Ultravioleta
14.
Toxicology ; 468: 153112, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35101591

RESUMO

The global increase in the demand for ripe fruits has induced unhealthy use of toxic chemicals in fruit ripening. One of such chemicals in common use is calcium carbide (CaC2). Due to its nature, commercial CaC2 is consistently found to contain impurities such as Arsenic and other toxic and carcinogenic chemicals. Few studies have only reported acute associative effects of CaC2, whereas there is only sparse evidence of its chronic and long-term impact. This article reviewed all the information on the nature of commercial CaC2 used for food processing. Meanwhile, all reports on the acute effects of CaC2, such as skin burns, skin irritations and inflammation, were summarized. Despite reported acute cases, an increase in commercial CaC2 for fruit ripening has been reported in recent times, especially in developing countries, as many vendors may consider the toxic effects/risks as negligible. Therefore, this study highlighted the paucity in research studies on the chronic impact of commercial CaC2 while proposing possible mechanisms for CaC2 induction of cancer, cardiovascular dysfunction, diabetic mellitus and others. Furthermore, suggestions on further studies to unravel the chronic impacts of CaC2 on health and recommendations for viable alternatives of fruit ripening with minimal or zero toxicity were proffered. Finally, other suggestions such as improving CaC2 detection technologies and innovative grassroots educational programs will strengthen national and international agencies to enforce restrictions on the illicit use of the toxicant for fruit ripening.


Assuntos
Acetileno/análogos & derivados , Aditivos Alimentares/toxicidade , Frutas/efeitos dos fármacos , Acetileno/química , Acetileno/toxicidade , Aerossóis , Animais , Arsênio/análise , Arsênio/toxicidade , Contaminação de Medicamentos , Aditivos Alimentares/química , Contaminação de Alimentos/prevenção & controle , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Frutas/crescimento & desenvolvimento , Humanos , Pós
15.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35226096

RESUMO

Flowering plants produce flowers and one of the most complex floral structures is the pistil or the gynoecium. All the floral organs differentiate from the floral meristem. Various reviews exist on molecular mechanisms controlling reproductive development, but most focus on a short time window and there has been no recent review on the complete developmental time frame of gynoecium and fruit formation. Here, we highlight recent discoveries, including the players, interactions and mechanisms that govern gynoecium and fruit development in Arabidopsis. We also present the currently known gene regulatory networks from gynoecium initiation until fruit maturation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocinas/metabolismo , Flores/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
16.
BMC Plant Biol ; 22(1): 23, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998386

RESUMO

BACKGROUND: Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS: Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS: Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.


Assuntos
Ácido Abscísico/metabolismo , Actinidia/crescimento & desenvolvimento , Actinidia/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Actinidia/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética
17.
BMC Plant Biol ; 22(1): 2, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979911

RESUMO

BACK GROUND: MYB Transcription factors (TFs) are most imperative and largest gene family in plants, which participate in development, metabolism, defense, differentiation and stress response. The MYB TFs has been studied in various plant species. However, comprehensive studies of MYB gene family in the sweet cherry (Prunus avium L.) are still unknown. RESULTS: In the current study, a total of 69 MYB genes were investigated from sweet cherry genome and classified into 28 subfamilies (C1-C28 based on phylogenetic and structural analysis). Microcollinearity analysis revealed that dispersed duplication (DSD) events might play an important role in the MYB genes family expansion. Chromosomal localization, the synonymous (Ks) and nonsynonymous (Ka) analysis, molecular characteristics (pI, weight and length of amino acids) and subcellular localization were accomplished using several bioinformatics tools. Furthermore, the members of distinct subfamilies have diverse cis-acting regions, conserved motifs, and intron-exon architectures, indicating functional heterogeneity in the MYB family. Moreover, the transcriptomic data exposed that MYB genes might play vital role in bud dormancy. The quantitative real-time qRT-PCR was carried out and the expression pattern indicated that MYB genes significantly expressed in floral bud as compared to flower and fruit. CONCLUSION: Our comprehensive findings provide supportive insights into the evolutions, expansion complexity and functionality of PavMYB genes. These PavMYB genes should be further investigated as they seem to be brilliant candidates for dormancy manipulation in sweet cherry.


Assuntos
Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Prunus avium/genética , Fatores de Transcrição/genética , Flores/genética , Frutas/genética , Família Multigênica , Proteínas de Plantas/metabolismo , Prunus avium/crescimento & desenvolvimento , Prunus avium/metabolismo , Fatores de Transcrição/metabolismo
18.
BMC Plant Biol ; 22(1): 27, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016620

RESUMO

BACKGROUND: Fruits are vital food resources as they are loaded with bioactive compounds varying with different stages of ripening. As the fruit ripens, a dynamic color change is observed from green to yellow to red due to the biosynthesis of pigments like chlorophyll, carotenoids, and anthocyanins. Apart from making the fruit attractive and being a visual indicator of the ripening status, pigments add value to a ripened fruit by making them a source of nutraceuticals and industrial products. As the fruit matures, it undergoes biochemical changes which alter the pigment composition of fruits. RESULTS: The synthesis, degradation and retention pathways of fruit pigments are mediated by hormonal, genetic, and environmental factors. Manipulation of the underlying regulatory mechanisms during fruit ripening suggests ways to enhance the desired pigments in fruits by biotechnological interventions. Here we report, in-depth insight into the dynamics of a pigment change in ripening and the regulatory mechanisms in action. CONCLUSIONS: This review emphasizes the role of pigments as an asset to a ripened fruit as they augment the nutritive value, antioxidant levels and the net carbon gain of fruits; pigments are a source for fruit biofortification have tremendous industrial value along with being a tool to predict the harvest. This report will be of great utility to the harvesters, traders, consumers, and natural product divisions to extract the leading nutraceutical and industrial potential of preferred pigments biosynthesized at different fruit ripening stages.


Assuntos
Antocianinas/genética , Antocianinas/metabolismo , Carotenoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
19.
Gene ; 814: 146162, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34995732

RESUMO

Strawberry is a highly efficient and economical horticultural crop plant, and strawberry fruits are easy to soften after ripening and decay after harvest, which severely impacts the economic benefits. Expansins are plant cell-wall loosening proteins involved in the process of fruit softening, loosening cell walls and reducing fruit firmness. In this study, 35 FvEXPs genes were identified in the F. vesaca genome. These genes were divided into four subfamilies (27 FvEXPAs, 5 FvEXPBs, 1 FvEXLAs, and 2 FvEXLBs) and were unevenly distributed on 7 chromosomes. Gene structure and motif analysis showed the conserved structure and motif in same subgroup, however, the different motifs and structures may reveal functional divergence of multigene family members of FvEXPs in different developmental stages of fruits. The expression profiling by RNA-seq and qRT-PCR analysis revealed that the FvEXP genes have distinct expression patterns among different stages of strawberry development and ripening. Among them, 3 genes (FvEXPA9, FvEXPA12, and FvEXPA27) were highly expressed in the ripening stage, FvEXPA9 and FvEXPA12 were especially highly expressed in turning stage, whereas FvEXPA27 was especially highly expressed in red stage. Our study provides a better understanding of the FvEXP genes, which may benefit strawberry biotechnological breeding and genetic modification for improving fruit quality and delaying fruit softening.


Assuntos
Fragaria/crescimento & desenvolvimento , Fragaria/genética , Proteínas de Plantas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Sequência Conservada , Frutas/genética , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Desenvolvimento Vegetal/genética , Regiões Promotoras Genéticas , Sintenia , Transcriptoma
20.
Sci Rep ; 12(1): 371, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013363

RESUMO

Calamansi or Philippine lime (Citrofortunella macrocarpa) is an important crop for local economic in Hainan Island. There is no study about Calamansi germplasm evaluation and cultivar development. In this study, Calamansi data were collected from 151 of Calamansi seedling trees, and 37 phenotypic traits were analyzed to investigate their genetic diversities. The cluster analysis and principal component analysis were conducted aiming to provide a theoretical basis for the Calamansi genetic improvement. The results of the diversity analysis revealed: (1) the diversity indexes for qualitative traits were ranged from 0.46-1.39, and the traits with the highest genetic diversity level were fruit shaped and pulp colored (H' > 1.20); and the diversity indexes for quantitative traits ranged from 0.67-2.10, with the exception of a lower in fruit juice rate (1.08) and lower in number of petals (0.67). (2) The clustering analysis of phenotypic traits have arranged the samples into 4 categories: the first group characterized by fewer flesh Segment number per fruit (SNF) and more Oil cell number (OCN); the second group had 7 samples, all characterized with larger Crown breadth (CB), higher Yield per tree (YPT), the lager leaf, the higher Ascorbic acid (AA), and less Seed number per fruit (SNPF); the third group had 25 samples characterized by smaller Tree foot diameter (TFD),smaller Fruit shape index (FSI) and higher Total soluble solids (TSS) contain; the fourth group had 87 samples, they were characterized by shorter Petiole length (PEL), larger fruit, higher Juice ratio (JR), multiple Stamen number (SN) and longer Pistil length (PIL). (3) The principal component analysis showed the values of the first 9 major components characteristic vectors were all greater than 3, the cumulative contribution rate reach 72.20%, including the traits of single fruit weight, fruit diameter, tree height, tree canopy width etc. Finally, based on the comprehensive main component value of all samples, the Calamansi individuals with higher testing scores were selected for further observation. This study concludes that Calamansi seedling populations in the Hainan Island holds great genetic diversity in varies traits, and can be useful for the Calamansi variety improvements.


Assuntos
Variação Biológica da População , Citrus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Citrus/genética , Análise por Conglomerados , Produtos Agrícolas/genética , Frutas/genética , Sucos de Frutas e Vegetais , Variação Genética , Genótipo , Padrões de Herança , Fenótipo , Filogenia , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Sementes/genética , Árvores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...